Oxford
Renewable Energy Prediction: A Comparative Study of Deep Learning Models for Complex Dataset Analysis
Wang, Haibo, Huang, Jun, Sua, Lutfu, Alidaee, Bahram
The increasing focus on predicting renewable energy production aligns with advancements in deep learning (DL). The inherent variability of renewable sources and the complexity of prediction methods require robust approaches, such as DL models, in the renewable energy sector. DL models are preferred over traditional machine learning (ML) because they capture complex, nonlinear relationships in renewable energy datasets. This study examines key factors influencing DL technique accuracy, including sampling and hyperparameter optimization, by comparing various methods and training and test ratios within a DL framework. Seven machine learning methods, LSTM, Stacked LSTM, CNN, CNN-LSTM, DNN, Time-Distributed MLP (TD-MLP), and Autoencoder (AE), are evaluated using a dataset combining weather and photovoltaic power output data from 12 locations. Regularization techniques such as early stopping, neuron dropout, L1 and L2 regularization are applied to address overfitting. The results demonstrate that the combination of early stopping, dropout, and L1 regularization provides the best performance to reduce overfitting in the CNN and TD-MLP models with larger training set, while the combination of early stopping, dropout, and L2 regularization is the most effective to reduce the overfitting in CNN-LSTM and AE models with smaller training set.
Individual Fairness under Uncertainty
Zhang, Wenbin, Wang, Zichong, Kim, Juyong, Cheng, Cheng, Oommen, Thomas, Ravikumar, Pradeep, Weiss, Jeremy
Algorithmic fairness, the research field of making machine learning (ML) algorithms fair, is an established area in ML. As ML technologies expand their application domains, including ones with high societal impact, it becomes essential to take fairness into consideration during the building of ML systems. Yet, despite its wide range of socially sensitive applications, most work treats the issue of algorithmic bias as an intrinsic property of supervised learning, i.e., the class label is given as a precondition. Unlike prior studies in fairness, we propose an individual fairness measure and a corresponding algorithm that deal with the challenges of uncertainty arising from censorship in class labels, while enforcing similar individuals to be treated similarly from a ranking perspective, free of the Lipschitz condition in the conventional individual fairness definition. We argue that this perspective represents a more realistic model of fairness research for real-world application deployment and show how learning with such a relaxed precondition draws new insights that better explains algorithmic fairness. We conducted experiments on four real-world datasets to evaluate our proposed method compared to other fairness models, demonstrating its superiority in minimizing discrimination while maintaining predictive performance with uncertainty present.
Biomembrane-based Memcapacitive Reservoir Computing System for Energy Efficient Temporal Data Processing
Hossain, Md Razuan, Mohamed, Ahmed Salah, Armendarez, Nicholas Xavier, Najem, Joseph S., Hasan, Md Sakib
Reservoir computing is a highly efficient machine learning framework for processing temporal data by extracting features from the input signal and mapping them into higher dimensional spaces. Physical reservoir layers have been realized using spintronic oscillators, atomic switch networks, silicon photonic modules, ferroelectric transistors, and volatile memristors. However, these devices are intrinsically energy-dissipative due to their resistive nature, which leads to increased power consumption. Therefore, capacitive memory devices can provide a more energy-efficient approach. Here, we leverage volatile biomembrane-based memcapacitors that closely mimic certain short-term synaptic plasticity functions as reservoirs to solve classification tasks and analyze time-series data in simulation and experimentally. Our system achieves a 99.6% accuracy rate for spoken digit classification and a normalized mean square error of 7.81*10^{-4} in a second-order non-linear regression task. Furthermore, to showcase the device's real-time temporal data processing capability, we achieve 100% accuracy for a real-time epilepsy detection problem from an inputted electroencephalography (EEG) signal. Most importantly, we demonstrate that each memcapacitor consumes an average of 41.5 fJ of energy per spike, regardless of the selected input voltage pulse width, while maintaining an average power of 415 fW for a pulse width of 100 ms. These values are orders of magnitude lower than those achieved by state-of-the-art memristors used as reservoirs. Lastly, we believe the biocompatible, soft nature of our memcapacitor makes it highly suitable for computing and signal-processing applications in biological environments.
Privacy Threats in Stable Diffusion Models
Cilloni, Thomas, Fleming, Charles, Walter, Charles
This paper introduces a novel approach to membership inference attacks (MIA) targeting stable diffusion computer vision models, specifically focusing on the highly sophisticated Stable Diffusion V2 by StabilityAI. MIAs aim to extract sensitive information about a model's training data, posing significant privacy concerns. Despite its advancements in image synthesis, our research reveals privacy vulnerabilities in the stable diffusion models' outputs. Exploiting this information, we devise a black-box MIA that only needs to query the victim model repeatedly. Our methodology involves observing the output of a stable diffusion model at different generative epochs and training a classification model to distinguish when a series of intermediates originated from a training sample or not. We propose numerous ways to measure the membership features and discuss what works best. The attack's efficacy is assessed using the ROC AUC method, demonstrating a 60\% success rate in inferring membership information. This paper contributes to the growing body of research on privacy and security in machine learning, highlighting the need for robust defenses against MIAs. Our findings prompt a reevaluation of the privacy implications of stable diffusion models, urging practitioners and developers to implement enhanced security measures to safeguard against such attacks.
Are Your Explanations Reliable? Investigating the Stability of LIME in Explaining Text Classifiers by Marrying XAI and Adversarial Attack
Burger, Christopher, Chen, Lingwei, Le, Thai
LIME has emerged as one of the most commonly referenced tools in explainable AI (XAI) frameworks that is integrated into critical machine learning applications--e.g., healthcare and finance. However, its stability remains little explored, especially in the context of text data, due to the unique text-space constraints. To address these challenges, in this paper, we first evaluate the inherent instability of LIME on text data to establish a baseline, and then propose a novel algorithm XAIFooler to perturb text inputs and manipulate explanations that casts investigation on the stability of LIME as a text perturbation optimization problem. XAIFooler conforms to the constraints to preserve text semantics and original prediction with small perturbations, and introduces Rank-biased Overlap (RBO) as a key part to guide the optimization of XAIFooler that satisfies all the requirements for explanation similarity measure. Extensive experiments on real-world text datasets demonstrate that XAIFooler significantly outperforms all baselines by large margins in its ability to manipulate LIME's explanations with high semantic preservability.
TopRoBERTa: Topology-Aware Authorship Attribution of Deepfake Texts
Uchendu, Adaku, Le, Thai, Lee, Dongwon
Recent advances in Large Language Models (LLMs) have enabled the generation of open-ended high-quality texts, that are non-trivial to distinguish from human-written texts. We refer to such LLM-generated texts as \emph{deepfake texts}. There are currently over 11K text generation models in the huggingface model repo. As such, users with malicious intent can easily use these open-sourced LLMs to generate harmful texts and misinformation at scale. To mitigate this problem, a computational method to determine if a given text is a deepfake text or not is desired--i.e., Turing Test (TT). In particular, in this work, we investigate the more general version of the problem, known as \emph{Authorship Attribution (AA)}, in a multi-class setting--i.e., not only determining if a given text is a deepfake text or not but also being able to pinpoint which LLM is the author. We propose \textbf{TopRoBERTa} to improve existing AA solutions by capturing more linguistic patterns in deepfake texts by including a Topological Data Analysis (TDA) layer in the RoBERTa model. We show the benefits of having a TDA layer when dealing with noisy, imbalanced, and heterogeneous datasets, by extracting TDA features from the reshaped $pooled\_output$ of RoBERTa as input. We use RoBERTa to capture contextual representations (i.e., semantic and syntactic linguistic features), while using TDA to capture the shape and structure of data (i.e., linguistic structures). Finally, \textbf{TopRoBERTa}, outperforms the vanilla RoBERTa in 2/3 datasets, achieving up to 7\% increase in Macro F1 score.
Memento: Facilitating Effortless, Efficient, and Reliable ML Experiments
Pullar-Strecker, Zac, Chang, Xinglong, Brydon, Liam, Ziogas, Ioannis, Dost, Katharina, Wicker, Jörg
Running complex sets of machine learning experiments is challenging and time-consuming due to the lack of a unified framework. This leaves researchers forced to spend time implementing necessary features such as parallelization, caching, and checkpointing themselves instead of focussing on their project. To simplify the process, in this paper, we introduce Memento, a Python package that is designed to aid researchers and data scientists in the efficient management and execution of computationally intensive experiments. Memento has the capacity to streamline any experimental pipeline by providing a straightforward configuration matrix and the ability to concurrently run experiments across multiple threads.